

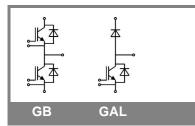
SEMITRANS[®] 3

Trench IGBT Module

SKM 400GB126D SKM 400GAL126D

Preliminary Data

Features


- Homogeneous Si
- Trench = Trenchgate technology
- V_{CEsat} with positive temperature coefficient
- High short circuit capability, self limiting to 6 x l_c

Typical Applications

- AC inverter drives
- UPS
- Electronic welders

Absolute Maximum Ratings T _c = 25 °C, unless otherwise specifie						
Symbol	Conditions		Values	Units		
IGBT						
V _{CES}	T _j = 25 °C		1200	V		
I _C	T _j = 150 °C	T _{case} = 25 °C	470	А		
		T _{case} = 80 °C	330	А		
I _{CRM}	I _{CRM} =2xI _{Cnom}		600	А		
V _{GES}			± 20	V		
t _{psc}	$V_{CC} = 600 \text{ V}; V_{GE} \le 20 \text{ V}; \\ V_{CES} < 1200 \text{ V}$	T _j = 125 °C	10	μs		
Inverse Diode						
I _F	T _j = 150 °C	T _{case} = 25 °C	400	Α		
		T _{case} = 80 °C	270	А		
I _{FRM}	I _{FRM} =2xI _{Fnom}		600	А		
I _{FSM}	t _p = 10 ms; sin.	T _j = 150 °C	2200	А		
Freewhee	eling Diode					
I _F	T _j = 150 °C	T _{case} = 25 °C	400	А		
		T _{case} = 80 °C	270	А		
I _{FRM}	I _{FRM} =2xI _{Fnom}		600	А		
I _{FSM}	t _p = 10 ms; sin.	T _j = 150 °C	2200	А		
Module	_					
I _{t(RMS)}			500	А		
T _{vj}			- 40+ 150	°C		
T _{stg}			- 40+ 125	°C		
V _{isol}	AC, 1 min.		4000	V		

Characteristics $T_c = 25 \text{ °C}$, unless otherwise spec					pecified	
Symbol	Conditions		min.	typ.	max.	Units
IGBT						•
V _{GE(th)}	$V_{GE} = V_{CE}$, $I_C = 12 \text{ mA}$		5	5,8	6,5	V
I _{CES}	V_{GE} = 0 V, V_{CE} = V_{CES}	T _j = 25 °C		0,15	0,45	mA
V _{CE0}		T _j = 25 °C		1	1,2	V
		T _j = 125 °C		0,9		V
r _{CE}	V _{GE} = 15 V	T _j = 25°C		2,3	3,2	mΩ
		T _j = 125°C		3,7		mΩ
V _{CE(sat)}	I _{Cnom} = 300 A, V _{GE} = 15 V	T _j = 25°C _{chiplev.}		1,7	2,15	V
		T _j = 125°C _{chiplev.}		2		V
C _{ies}				23,1		nF
C _{oes}	V_{CE} = 25, V_{GE} = 0 V	f = 1 MHz		1,9		nF
C _{res}				1,2		nF
Q _G	V _{GE} = -8V +20V			2800		nC
R _{Gint}	T _j = °C			2,5		Ω
t _{d(on)}				330		ns
t,	$R_{Gon} = 2 \Omega$	V _{CC} = 600V		50		ns
É _{on}		I _C = 300A		29		mJ
t _{d(off)}	R_{Goff} = 2 Ω	T _j = 125 °C		650		ns
t _f		V _{GE} = ±15V		110		ns
E _{off}				48		mJ
R _{th(j-c)}	per IGBT				0,08	K/W

SEMITRANS[®] 3

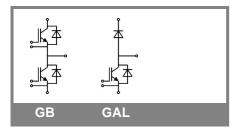
Trench IGBT Module

SKM 400GB126D SKM 400GAL126D

Preliminary Data

Features

- Homogeneous Si
- Trench = Trenchgate technology
- V_{CEsat} with positive temperature coefficient
- High short circuit capability, self limiting to 6 x l_c


Typical Applications

- AC inverter drives
- UPS
- Electronic welders

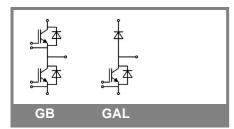
Characte				41		11
-	Conditions		min.	typ.	max.	Units
Inverse [T = 25 °C		1.6	1 0	
$v_F = v_{EC}$	I_{Fnom} = 300 A; V_{GE} = 0 V			1,6	1,8	V
N/		$T_j = 125 \ ^\circ C_{chiplev.}$ $T_j = 25 \ ^\circ C$		1,6	1,8	V
V _{F0}				1	1,1	V
		T _j = 125 °C		0,8	0,9	V
r _F		$T_j = 25 \degree C$		2	2,3	mΩ
		T _j = 125 °C		2,7	3	mΩ
I _{RRM}	$I_{\rm F} = 300 {\rm A}$	T _j = 125 °C		390		A
Q _{rr}	$di/dt = 6300 \text{ A/}\mu\text{s}$			77		μC
E _{rr}	V _{GE} = -15 V; V _{CC} = 600 V			27		mJ
R _{th(j-c)D}	per diode				0,18	K/W
	eling Diode					
$V_F = V_{EC}$	I_{Fnom} = 300 A; V_{GE} = 0 V			1,6	1,8	V
		$T_j = 125 \ ^{\circ}C_{chiplev.}$ $T_j = 25 \ ^{\circ}C$		1,6	1,8	V
V _{F0}		T _j = 25 °C		1	1,1	V
		T _j = 125 °C		0,8	0,9	V
r _F		T _j = 25 °C		2	2,3	V
		T _j = 125 °C		2,7	3	V
I _{RRM}	I _F = 300 A	T _j = 125 °C		390		Α
Q _{rr}	di/dt = 6300 A/µs			77		μC
E _{rr}	V_{GE} = -15 V; V_{CC} = 600 V			27		mJ
R _{th(j-c)D}	per diode				0,18	K/W
Module	4					
L _{CE}				15	20	nH
R _{CC'+EE'}	res., terminal-chip	T _{case} = 25 °C		0,35		mΩ
CC +EE		T _{case} = 125 °C		0,5		mΩ
R _{th(c-s)}	per module	Case			0,038	K/W
M _s	to heat sink M6		3		5	Nm
M _t	to terminals M6		2,5		5	Nm
w					325	g

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

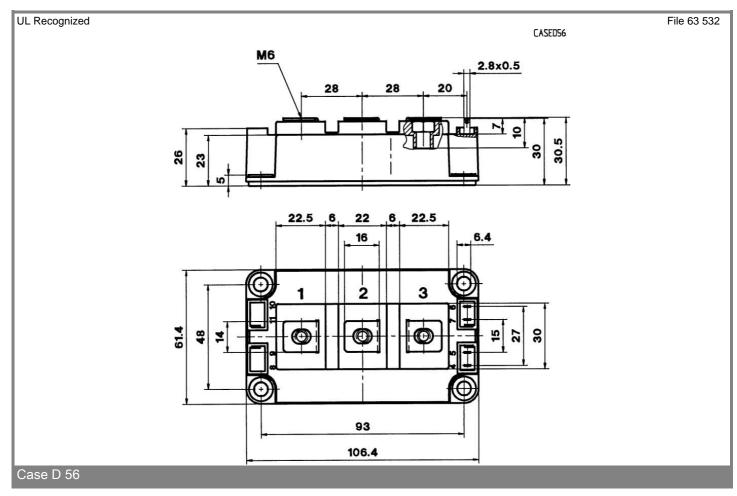
This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

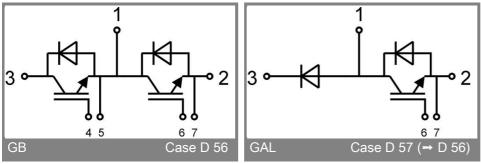
Trench	IGBT	Module

SKM 400GB126D SKM 400GAL126D


Preliminary Data

Features


- Homogeneous Si
- Trench = Trenchgate technology
- V_{CEsat} with positive temperature coefficient
- High short circuit capability, self limiting to 6 x l_c


Typical Applications

- AC inverter drives
- UPS
- Electronic welders

Z _{th}	_		
Symbol	Conditions	Values	Units
Z _{th(j-c)} l	i = 1	55	mk/W
R _i	i = 2	21	mk/W
R _i	i = 3	3,6	mk/W
R _i	i = 4	0,4	mk/W
tau	i = 1	0,0393	s
tau	i = 2	0,0171	s
tau	i = 3	0,002	s
tau _i	i = 4	0,0002	s
Z _{Ri} th(j-c)D			
R _i	i = 1	120	mk/W
R _i	i = 2	48	mk/W
R _i	i = 3	10	mk/W
R _i	i = 4	2	mk/W
tau _i	i = 1	0,0262	s
tau _i	i = 2	0,0417	s
tau _i	i = 3	0,0012	s
tau _i	i = 4	0,001	s

